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Filtering of Multidimensional Semiperiodic Signals A discrete signal{z(n)},cz+ is calledsemiperiodicif for every
real number: > 0 there exists a matrif" of GL(k, Z) satisfying
Félix Galindo and Javier Sanz ;
|z(r) —2(n+Tm)| < ¢, for n, m € 7",
The spacesp(k) of semiperiodic signals o@* is the completion
Abstract—Filters on the space of multidimensional semiperiodic signals of p(k) with respect to the supremum norm, i.e., given a sequence

are studied. We show that the filters on these signals whose transfer f iodic f . hat is C h ith h
function is reasonably smooth satisfy many additional properties. As an ©Of Periodic functions that is Cauchy with respect to the supremum

application, we prove that semiperiodic solutions of a class of difference Norm, it converges to a semiperiodic signal. Moreover, given a fixed
equations can be found under a condition weaker than those previously semiperiodic signat, there exits a sequence of periodic signals that
known. converges in the uniform limit tg: (see [9, pp. 191-193]).
Index Terms—Filtering, Fourier transform, semiperiodic signal. Semiperiodic signals are precisely the uniformly continuous func-
tions onz* with the topology7; that has{V,, »: T € GL(k, Z)}

as a fundamental system of open neighborhoods, afhere
I. INTRODUCTION

Multidimensional discrete signals have many applications to image Var={n+Tm:m €77}, ne€l’, TeGLk 1)

scanning, computer-aided tomography, geophysics, design of passi4es topology7;. is compatible with the group structure & .

sonar arrays, noise removal, etc. [4], [11]. Among them, periodicf 7 ¢ G.(k, Z), the setTZ* is a subgroup of the additive

signals have a special interest because of the basic role playedgkyup z*. The corresponding quotient s@f/TZ* is finite, and

the discrete Fourier transform in signal theory and the computatiorglrd 7 /T7*) = | det(T)| [3, pp. 9-14].

speed provided by the fast Fourier transform. In our study of the Following the idea given in [13] and [14] in the case= 1,

engineering literature, we have noticed the lack of a solid theoretiggé may obtain a representation of the completion(2¥f, 7;) as

background to get a consistent definition of basic tools such @& projective limit of the inverse mapping system given by the

filtering, moment expansion, etc. Our correspondence discusses gh§ections ofz* /TZ* onto Z*/S7*, S < T. This group, which

application of ideas from theoretical harmonic analysis to the stugydenoted by\y, is compact, and it is possible to identify the space

of filters on the space of multidimensional semiperiodic signals. of the semiperiodic signals with the space of continuous functions
The space of semiperiodic sequences is the completion of the spgge\ , . In particular, every discrete periodic signalof periodT" is

of periodic sequences with the supremum norm. Berg [2] provggsociated with its unique continuous extensionon

that this space is the Banach algebi@\) of continuous functions

in a compact groupA. Later, Niflez in [13] and [14] obtains a Z w(n)xva

similar result, giving more information about the group. The neP(T)

generalization of these results to the multidimensional case will allg k . 5 .

us to prove that filters oh-dimensional semiperiodic signals may bev‘%ere?—’(T) N {2121 At €10, D} n 77, andXVn v 1S the

characterized in terms of Borel measures on a certain compact gr@ﬂ racterlst!c functhn of the closure.b:,;r in A We.remark that
AL P(T) contains a unique representative of each equivalence class of

, . . . . 7% /12",
We will describe briefly the main mathematical results on the space

of semiperiodic signals. Complete proofs may be found in [1], [5]-[7],

[9], and [12]. Il. FILTERS OF SEMIPERIODIC SIGNALS
A discrete multidimensional signas a complex function defined If G is a conmutative compact group with dual grotp a filter
on Z*. It is denoted by{z(n)},czx OF z. (which is usually callednultiplier in mathematical terminology) on

A discrete signakx(n)}, 2« is said to beperiodicif there exists C(G) is a continuous operatas on C(G), which is shift-invariant
a regular matrixl” = (t,;) of orderk with coefficients inZ such that [i.e., 7.(¢g) = ¢(7ag) for a € G, wherer,g(u) = g(u — a)].
A classical theorem in this theory, whose proof can be found in
z(n+Tm) = z(n), for n, m € Z". [6], [10], and [12], states that each filteron C(G) can be associated

with a Borel measurg: on G such that
The matrixT is called aperiod of z;. The setp(k) of the periodic oy
. . - o . by = , for C(G).
discrete signals defined off is not complete with the supremum 09 =Hxy 9€C(&)
norm. The Fourier—Stieltjes transform @f, f = /i, which is defined on
We define inGL(k, Z), which is the multiplicative semigroup of G, satisfies
regular matrices of order with coefficients inZ, the relationS < T o . o A
if there existsP € GL(k, Z) such thatT' = SP. This is a preorder (09)" (1) = f(Ma(y),  forgeC(G), v €.
relation such that foss, T, there existsR with 5. T < R. In other |, gjgna) theory, the functiorf is usually called theransfer function
words, GL(k, Z) is a directed set. of the filter.
Given this definition, we note that there are as many filters as
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respect toy. We prove that a weak condition, such as the continuity Proof of the Lemma:Let {yr}rcgoc(e,z) be the family of peri-
of f, implies that the filter is of a specific type and that the functiondic signals associated witta by
f belongs to the algebra(T*) of the continuous functions of*,

whose Fourier series is absolutely summable. pr(r) = p(Va, r).
Theorem: Let ¢: sp(k) — sp(k) be a linear map. The following -
statements are equivalent. If T is a matrix ofGL(k, Z), we denote byf” the subgroup of

given by the elements = (zy, -- -, z) € I'y, such that the function
2 defined onZ* by (1) is T-periodic. If z is a periodic signal of
period T, its Fourier transform is given by the expression

1) ¢ is a filter associated with a measure concentrate@’on
2) There exists an absolutely summable fam{ly,},cz+ Of
complex numbers satisfying

, 1 _ . T
#z) = ——= z "a(n) if zel
ox = Z An—mx(m) , for g € sp(k). det T nerz('r) '
mezk nczk
. . ] . . and the Fourier—Stieltjes transform pfsatisfies
3) There exists a continuous functigron thek-dimensional torus

T* such that iz)= 3> 2 "u(Ves). ifzer™
(62) (z) = f(2)i(z),  for z € T. nEP(T)
Proof: Suppose thab is a filter associated with a measyrec 1 herefore

M(Ay) concentrated oiZ*. There exists an absolutely summable CoN —n
; iz = > 2u(Var)
family {an},cz+ Of complex numbers such that Py

= Z AnOn Z z "ur(n)

neczk neP(T)
|det T|pr(z), ifzel”.

whereé,, stands for the Dirac measure centered at the paiffthen,
for eachn ¢ 7*

(6z)(n) =p*z(n)

:/‘ x(n —u)dp(u)
Ay

Applying the Fourier inversion theorem to the last expression

.U’(Vn,T) :,U/T(n) = Z /AI/T(Z)Zn

zET‘T
1 A n
= %k amz(n —m) = det T ZT f(z)z".
m zel
= Z Up—mr(m) . Lo . .
A Taking limits in the net with respect to the preorder relation of
mel GL(K. Z)
which shows that 1) implies 2).
If 2) holds, it makes sense to define the measure M (Ay) by lim b Z ji(z)z"

f=3 .z andn. FOrz € sp(k) and forn € Z*, we have that Tegi(k2) [det T| £,

/ = i A _f ) = i ‘ = .

((pg)(n) = Z a,niml'(m) =pu *g(n) Teyllﬁn(lk,z) H(‘ n,l) ﬂ(ln}) 0
mezk
and the equivalence of 1) and 2) is proved On the other hand, iT" is a diagonal matrix and its diagonal is
. ]\»
Now, we prove that 1) implies 3). The group, = (1, t) € N

{(z, -+, z) € C*: z; is a root of the unity, with the discrete 1 1 t -1 th—1
topology is the dual group ah;. [8]. The functionz defined by m Zl ji(z)z" = P—— ZO ZO

. _ . mo_ .n1 . an k z€l my= M=

/-('n) =z =z ko ne’ (1) . f(c'zwi(nn/t]) - (327ri(mk/t;\,))
gives z € Ty as a character om\;. If g = 3 ;i anbn, its 2mil(man /1)t -+ (mpn g /te)]
Fourier-Stieltjes transform is given by He

ji(z) = Z nz ™, for z € T'y. is a Riemann sum ifM* of the integral

nczk

Since the family {an},cz+ is absolutely summablej can be
extended to a continuous functighon T*

f(z) = Z Anz™ "

nezk

f(62ﬁi81’ .- 627risk‘)627risn dsl . dé‘],:
[0, 1]%
= f)w™ dw,y - dw;,.
Tk

Hence, the Fourier transform gfin T* is zero
The proof that 3) implies 1) is based on the following lemma.

Lemma: Let f be the transfer function of a filter. If can be f(n) _ / Fw)yw ™ dw; -+ dwg =0, forn c 7
extended to a Riemann integrable function Bh and the measure T '

, € M(Ay) such thati = f satisfiesu({n}) = 0, for n € 7*, then _ e
a (&) =1 su({n}) " which means that the functiofi is equal to zero almost everywhere

f=0  almost everywhere iff*. in T,
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Proof of the Implication 3} 1): If statement 3) holds, theg is Corollary: Let{an},czr: {bn}ncz+ b€ two absolutely summable
afilter andf is its transfer function. Lej: be the measure associatedamilies of complex numberg(z) = >, bnz ™ and p(z) =
with ¢, i.e.,fi = f. The measurg is the sum of two measures and 3" ;. anz ™. The difference equation
f12, Wherey, is concentrated o* andy»({n}) = 0 for alln € Z".

Hence, the Fourier—Stieltjes transform @of may be extended to a

continuous function ifT*. Then, the functiotiy = ji—ji1 = f—ji Z bey(n — k) = Z ajr(n —j)
can be also extended to a continuous functioff fn It follows from kezk jezk

the previous lemma that. is equal to zero. As a consequence,

ft = fu1 + f12 = ji1; the uniqueness of the Fourier—Stieltjes transform _ ' . .
implies thaty = ;. Therefore,. is concentrated oE*. defines a filter® on sp(k), y = &g, if ¢(2) has no zeros ofi™. In

We want to emphasize the relation between this theorem and sofi§ case. the measure associated witfs concentrated oi", and
well-known results in harmonic analysis. Siné is the dual group 'S transfer function isf(z) = p(z)/a(2).
of Z*, the Fourier transform of an element gf (Z*) belongs to
C(T*) (see [6, pp. 89-90, 93)).

Corollary: Let f be a complex function defined oh,. The
following statements are equivalent. When we work with periodic signals (periodization of finite-extent

1) £ is the transfer function of a filter whose associated measi#nals, discrete Fourier transform), the set of all complex signals

is concentrated oZ*. and even the space of bounded signals may be too large to handle

2) There exists an absolutely summable farmiy, },c;« such easily. It is often advisable to restrict ourselves to the smaller space

I1l. CONCLUSION

that of signals that can be uniformly approximated by periodic signals,
i.e., the spacep(k) of semiperiodic signals.

f(z) = Z anz". We study filters onk-dimensional semiperiodic signals. These
nezk filters may be characterized in terms of Borel measures on a certain

A filter whose transfer function is compact groupA,. Using the particular structure of the group, we
prove that under certain regularity conditions on the Fourier—Stieltjes

flz)= > anz™™  forzeTy transform of the Borel measures dx),, those measures are concen-

nelN* trated onZ*. In a more applied language, this will mean that filters

: : - whose transfer functions satisfies a rather weak regularity condition
where {a,.}ne'Nk is a summable family of complex numbers, is”. . ’ X Lo 9 ty
called acausalor analytic filter (the functionz € I'y — f(z) may will be associated with a classical convolution filter. Finally, we prove

be extended to an analytic function in the unit open polydisc aréf 3t a dlﬁferenlce equa_lt_lr(]).n can be solvedspik) ||f( a(2) # 0 oln theh. h
continuous in the closed polydisc). For this class of filters, the vallg imensional torus. This improves on some known results (whic

e . : . L
of an output signal in a given time depends only on the values of tggmandq to be zero-free irjz;| > 1) and will be useful in realizing

input signal until that precise moment. From the previous corollar !gltal filters with infinite-extent impulse responses.
we have the following corollary.

Corollary: Let ¢ be a linear map fromsp(k) to sp(k). The
following statements are equivalent.
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