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Abstract. The growth rate of a magnetic field within a conducting fluid with a certain fixed
kinematic velocity is an indication of the efficiency of the dynamo effect. A possible way to
measure this growth rate consists of considering the maximum size of the magnetic field for all
possible initial conditions and for every instant of time. Both the maximum and the minimum in
time of these values are completely characterized here in terms of the numerical range and the
spectrum of the induction operator for all the usual norms. Among the consequences of these
results it is found that the classical bounds obtained by energy inequalities are optimal, that the
maximal uniform growth rate for the energy norm essentially coincides for the magnetic field and
the perturbed velocity, and that the minimal uniform growth rate for the magnetic field is precisely
the classical maximal growth rate.

1. Introduction

If we have a conducting fluid with a steady velocity u and consider the evolution of a magnetic
field B(t,x) which at t = 0 coincides with B0, we must first study the induction equation

∂B

∂t
= η�B + ∇ × (u × B)

B(0) = B0

(1)

plus the appropriate boundary conditions; η stands for the resistivity. If we take u as a fixed
field, this is a linear parabolic differential system and as such much more tractable than the
whole of the magnetohydrodynamical equations. Of course, the effect of the magnetic field
upon the velocity through the Lorentz force cannot be ignored for long and the correctness
of the evolution described by (1) ends when this kinematic dynamo saturates and the linear
description fails. However, kinematic dynamo theory is far from simple because of the usually
very complicated velocity field. To study the possible growth of the magnetic field (which,
by general theorems on C0 semigroups, is at most exponential; see, e.g., [1]), it is classically
defined the maximal growth rate:

ση,u = sup
B0

(
lim
t→∞

log ‖B(t)‖
t

)
. (2)

u is said to originate a fast dynamo if infη>0 ση,u > 0. (See [2] for a complete study.) In
principle, the value of ση,u depends upon the norm we are considering for B, but since the
dynamo operator A defined by the right-hand side of (1), for all the usual norms [3], has a
discrete spectrum accumulating at −∞, the value of ση,u can easily be shown to be the real part
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of the eigenvalue of A with largest real part. This is a purely algebraic amount and therefore
independent of the norm.

However, the above definition is not altogether satisfactory. If we know that the kinematic
growth will stop at some saturation time, why the limit when t → ∞? Because for finite time
the value will depend heavily on the initial condition B0, not on the real dynamo process. This
can be avoided by using the uniform growth rate

F(t) = sup
‖B0‖=1

log ‖B(t)‖
t

. (3)

The bound on the initial condition is intended to avoid spurious size due to a simple scaling of
B0. Now we define the maximal uniform growth rate as

�η,u = sup
t>0

F(t) (4)

and the minimal uniform growth rate

γη,u = inf
t>0

F(t). (5)

From now on we will omit the parameters η and u if there is no danger of confusion. The fact
that these values are generally different from the classical maximal growth rate and provide a
different insight into the dynamo process may be understood, without any calculation, by the
following argument. Imagine, as is often the case, that every single solution of the induction
equation tends ultimately to zero, then ση,u � 0. However, it is possible that considerable
transient growth may occur before the ultimate decline. If different initial conditions have
these transient growth periods at different intervals of time, the maximal uniform growth rate
does not need to be negative. Suppose that we want to study the magnetic field magnitude
for a given flow and (as indeed is the most usual realistic situation) we have no control upon
the initial condition, except that it is bounded by a certain amount, we could expect that by
having ση,u < 0 that the field would vanish, and yet to observe it for a 1000 years without any
indication of slackening. If �η,u < 0, however, the field will certainly decrease exponentially.

It is our purpose to find � and γ in terms of known values associated with the operator A.
To this end, we briefly review the notion of the numerical range of an operator (see, e.g., [4,5]).
We assume A is a closed operator defined in a dense domain D(A) of the Banach space X,
and let X∗ be its dual space, formed by the continuous linear functionals defined on X. For
every x ∈ X, we define

C(x) = {v ∈ X∗/‖v‖ = ‖x‖, 〈v, x〉 = ‖x‖2}. (6)

This set is nonempty by the Hahn–Banach theorem. In many cases it is formed by a single
element: for instance, if X is a Hilbert space, identified with its dual by the internal product,
C(x) = {x}. For the space Lp(�) of p-integrable functions on a domain �, 1 < p < ∞,
whose dual is Lq(�) (with 1/p + 1/q = 1),

C(f ) = {f̄ |f |p−2‖f ‖2−p} (7)

and for the space of continuous functions on a compact set C(K), let M be the set of positive
measures supported on {z ∈ K/|f (z)| = ‖f ‖∞}. Then C(f ) is formed by the Borel measures
λ such that dλ = f̄ dµ with µ ∈ M . The action of such a measure on g is

〈λ, g〉 =
∫
K

g dλ =
∫
K

gf̄ dµ. (8)

The numerical range of A is defined by

W(A) = {〈v,Ax〉 : x ∈ D(A), ‖x‖ = 1, v ∈ C(x)}. (9)
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In particular, for a Hilbert space,

W(A) = {(Ax, x) : x ∈ D(A), ‖x‖ = 1}. (10)

A lot is known about the numerical range and its relation to the spectrum ofA (see the references
above) particularly for bounded operators (which is not our case) in Hilbert spaces (which is
not always our case). For instance, the spectrum σ(A) is always contained in the closure of
W(A).

Finally, let us recall some properties of parabolic operators such as A, (see, e.g., [6]).
The family of operators T (t) : t � 0 which take B0 to B(t) form a semigroup in L(X) by
the obvious properties T (0) = I , T (t + s) = T (t)T (s). In fact, T (t) is a compact operator
for t > 0, which essentially means that the mapping t → T (t) is continuous from [0,∞) to
L(X) and that the resolvent operator (λ−A)−1 = (λI −A)−1 is compact for λ /∈ σ(A) (see,
e.g., [7]).

In addition, ‖(λ − A)−1‖ → 0 when Re λ → ∞. In our case, A is the perturbation of a
self-adjoint operator, which also implies ‖(λ−A)−1‖ → 0 when |Im λ| → ∞. The mapping
x → T (t)x is differentiable at t = 0 only when x ∈ D(A). Its differential is Ax. Finally,
T (t) may be expressed by an inverse-Laplace transform

T (t)B0 =
∫ r+i∞

r−i∞
etλ(λ − A)−1B0 dλ. (11)

Finally, we must caution the reader that such an obviously important problem as the growth
of solutions of linear evolution equations associated with non-normal operators could hardly
have been left undisturbed. It has long being acknowledged that for operators such as A the
resolvent (z − A)−1 may be small in norm for points z far from the spectrum, and for such z

there is a kind of pseudoresonance (see [8] and references therein). The theorem in section 3
on the minimal growth rate does not hold for all operators [9], although it is true if A has a
discrete spectrum [1], such as it is our case; and the theorem in section 2 on the maximal growth
may be proved with more generality by functional analytic arguments [7]. However, a separate
treatment for the kinematic dynamo is, in our opinion, justified because by the simplicity of the
arguments one does not need to refer to abstract mathematical theorems, and the applications
described in section 4 are unique to this problem. A related study with a somewhat different
language is presented in [10].

2. The maximal uniform growth rate

Since

F(t) = sup
‖B0‖=1

log ‖B(t)‖
t

= log ‖T (t)‖
t

and ‖T (t + s)‖ � ‖T (t)‖‖T (s)‖, the function in the numerator is a continuous subadditive
one: g(t + s) � g(t) + g(s). In this case,

sup
t>0

g(t)

t
= lim

t→0

g(t)

t

inf
t>0

g(t)

t
= lim

t→∞
g(t)

t
.

(12)

(see, e.g., [11]). Now, since ‖T (0)‖ = 1,

lim
t→0

log ‖T (t)‖
t

= lim
t→0

‖T (t)‖ − 1

t
= lim

t→0
sup

‖B‖=1

‖T (t)B‖ − 1

t
(13)
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and since D(A) is dense in X, D(A) ∩ {‖B‖ = 1} is dense in the unit sphere, so

� = lim
t→0

sup
(B∈D(A),‖B‖=1)

‖T (t)B‖ − 1

t
. (14)

Now, by the theorem of Hahn–Banach,

� = lim
t→0

sup
(B∈D(A),‖B‖=1)

sup
(v∈X∗,‖v‖=1)

Re 〈v, T (t)B〉 − 1

t
. (15)

As stated before, t → T (t)B is differentiable at t = 0; hence

T (t)B = B + tAB + tUt (B)

where ‖Ut(B)‖ → 0 when t → 0. Thus

Re 〈v, T (t)B〉 − 1

t
= Re 〈v,B〉 − 1

t
+ Re 〈v,AB〉 + Re 〈v,UtB〉. (16)

Since ‖B‖ = ‖v‖ = 1, Re 〈v,B〉 � 1 always. If it is strictly smaller than 1, the limit is −∞,
so when taking the supremum we may restrict ourselves to those v ∈ X∗ with Re 〈v,B〉 = 1.
Since |〈v,B〉| � 1, necessarily 〈v,B〉 = 1 and Re 〈v,B〉 − 1 = 0; hence v ∈ C(B). We are
left with

� = lim
t→0

sup
(B∈D(A),‖B‖=1)

sup
(v∈C(B))

(Re 〈v,AB〉 + Re 〈v,UtB〉). (17)

Now, 〈v,UtB〉 tends to zero for every B ∈ D(A); however, it does not tend uniformly to zero
for all B ∈ D(A)with ‖B‖ = 1, so we cannot simply cancel the last term. We know, however,
that the limit is uniform when we impose a common bound in the graph norm ‖B‖+‖AB‖ [12];
i.e.,

lim
t→0

sup
(B∈D(A),‖B‖=1,‖B‖+‖AB‖�M)

sup
(v∈C(B))

(Re 〈v,AB〉 + Re 〈v,UtB〉)

= sup
(B∈D(A),‖B‖=1,‖B‖+‖AB‖�M)

sup
(v∈C(B))

Re 〈v,AB〉. (18)

Unfortunately, the set of functions bounded in the graph norm by a certain constant is certainly
not dense in the unit sphere of X: as a matter of fact it is compact in X [12]. We have reached
the limits of a general argument, and to proceed further we need to turn to specific properties
of the induction operator A.

In the inverse-Laplace integral expressing T (t),

T (t)B =
∫ r+i∞

r−i∞
etλ(λ − A)−1B dλ (19)

we may deform the contour of integration by using Cauchy’s theorem and the already-
mentioned property ‖(λ − A)−1‖ → 0 when |Im λ| → ∞. We find

T (t)B =
∫ −k+i∞

−k−i∞
etλ(λ − A)−1B dλ +

∑
n

Pn(B)eλnt (20)

where Pn represent (not necessarily orthogonal) projections upon the spaces generated by the
eigenfunctions associated with eigenvalues λn, with Re λn > −k [13]. The integral on the left
is bounded by some constant times e−kt : taking k large enough, we see that this term does not
contribute to the maximum of log ‖T (t)B‖/t . Hence the supremum at (17) may be restricted
to a finite-dimensional subspace ofD(A), where ‖B‖ = 1 certainly implies ‖B‖+‖AB‖ � M

for some M . We have therefore found that

� = sup
(B∈D(A),‖B‖=1)

sup
(v∈C(B))

{Re 〈v,AB〉} = sup{Re λ : λ ∈ W(A)}. (21)
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3. The minimal uniform growth rate

As stated before,

γ = inf
t>0

log ‖T (t)‖
t

= lim
t→∞

log ‖T (t)‖
t

. (22)

Since the limit exists (although it could be −∞),

γ = lim
n→∞

log ‖T (n)‖
n

= lim
n→∞ log(‖T (n)‖1/n) = lim

n→∞ log(‖T (1)n‖1/n). (23)

It is well known that

lim
n→∞ ‖T (1)n‖1/n

is the spectral radius of the operator T (1). Its relation to the spectrum of A is well studied
(see, e.g., [1, 7]). In general, the point spectrum σp satisfies

etσp(A) ⊂ σp(T (t)) ⊂ etσp(A) ∪ {0}. (24)

Since T (1) is compact and A has a purely discrete spectrum,

σ(T (1)) = eσ(A) ∪ {0} (25)

and by taking logarithms,

γ = sup{Re λ : λ ∈ σ(A)}. (26)

Therefore, the minimal uniform growth rate is precisely the maximal growth rate. This does
not follow in any obvious way from the original definition, although after showing that γ
corresponds to the limit when t → ∞ it is reasonable that a common bound for all initial
conditions could be the same as the highest bound for every initial condition separately; that
this fact is really not trivial is apparent from our use of the strong result that A has a pure point
spectrum accumulating at −∞.

One of the strongest points of this and the previous result is its independence of the norm,
provided the conditions stated in the introduction are satisfied. This happens for a wide variety
of Lp, Sobolev and Hölder norms. Of these, the L1, L2 and supremum norms are routinely
used in dynamo studies. Of course, both results are equally true for any dissipative operator
with the characteristics of A, but the growth rates are particularly meaningful for the dynamo
problem.

4. Consequences

As usual, the space X = L2(�) is the easiest to study. � will represent a smooth bounded
domain of boundary ∂�; for an operator A in L2(�) its adjoint will be as usual denoted by
A∗, and for the matrix ∇u, (∇u)∗ will again represent its adjoint. The complex conjugate is
denoted by an overbar. As stated before, in this case the numerical range is

W(A) = {(AB,B) : ‖B‖ = 1}. (27)

If we assume that the flow is incompressible (∇ · u = 0; u is of course assumed real), by
standard applications of Gauss’ theorem we find

2Re (AB,B) = (AB,B) + (B, AB) = ((A + A∗)B,B)

= 2Re
∫ ∫

�

(η�B − u · ∇B + B · ∇u) · B dV

=
∫
∂�

η
∂B2

∂n
dσ − 2

∫ ∫
�

η|∇B|2 dV +
∫
∂�

B2u · n dσ

+
∫ ∫

�

B · (∇u + (∇u)∗) · B dV. (28)
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Thus the value of � may be found by analysing the maximum of this amount when ‖B‖ = 1.
Although this could be difficult in general, if u · n = 0 (the fluid does not cross the boundary)
and ∫

∂�

∂B2

∂n
dσ � 0

(there is no input of magnetic energy from the outside: this happens for all the usual
homogeneous boundary conditions [14]) then we find the classical bound

� � 1
2‖∇u + (∇u)∗‖∞. (29)

This result also follows from classical energy inequalities [14]; it is enough to find ∂B2/∂t

through the induction equation and show

∂B2

∂t
� MB2 (30)

where M is the supremum in (28), which proves

‖B(t)‖ � ‖B0‖e
1
2 Mt . (31)

Hence � � M/2; however, our result is finer in the sense that we prove that � is precisely
M/2, i.e., the energy bound is optimal.

Another consequence of the expression of � in terms of the numerical range is the
following: if u is a quasistatic solution of the Navier–Stokes equations (as it should be in
a static kinematic dynamo problem) and v is a small perturbation of u, v approximately
satisfies the linearized Navier–Stokes equations:

∂v

∂t
= ν�v − v · ∇u − u · ∇v − ∇p1 (32)

where ν stands for the viscosity and p1 the perturbed pressure. The same arguments may
be applied to this operator S : v → ν�v − v · ∇u − u · ∇v, and therefore the same
conclusions concerning the minimal and maximal uniform growth rates of v. Again, the
validity of equation (32) as a predicting instrument is limited in time: in this case because as
soon as v reaches a comparable size to u, the linear approximation breaks down. However, it
is worth noting that all the terms −u · ∇v2, −∇p1 · v, u · ∇B2 cancel out when integrating in
�, provided u ·n = v ·n = ∇ ·v = 0. In other words, the numerical ranges inL2(�) coincide
for A and S if ν = η, and therefore the maximal uniform growth rates are the same. We may
therefore assert that both magnetic field and velocity grow initially at the same maximum rate
provided the dissipative parameters coincide; in other words, the convective effects, although
essentially different for both magnitudes, increase them at the same maximum rate. The
possibility that ν = η may be a rare coincidence, but it has been considered as a model in
studies of MHD turbulence [15].

Finally, we may exploit the identity of γ and σ and a well known result [16] for the space
L1(�) to prove that if the minimum uniform growth rate is larger than a positive constant for
all η > 0 and a C∞ velocity field u, then the flow induced by u has a positive topological
entropy, and it is therefore chaotic.

5. Conclusions

We have studied the maximal and minimal uniform growth rates for a kinematic dynamo with
a steady velocity field and for all time. The first one turns out to be the largest real part of all
the complex numbers within the numerical range of the induction operator, and the second one
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the largest real part of all the eigenvalues of this operator. This is valid for all the usual norms;
in the case of the quadratic mean norm (i.e. the magnetic energy) the maximal uniform growth
rate coincides with the classical bound obtained by energy inequalities, which means that this
is an optimal bound. One consequence is that the perturbed magnetic field and velocity initially
grow at the same maximum rate.
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