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Abstract. This work is devoted to the study of a Cauchy problem for a certain family of

q-difference-differential equations having Fuchsian and irregular singularities. For given formal

initial conditions, we first prove the existence of a unique formal power series X̂(t, z) solving

the problem. Under appropriate conditions, q-Borel and q-Laplace techniques (firstly developed

by J.-P. Ramis and C. Zhang) help us in order to construct actual holomorphic solutions of the

Cauchy problem whose q-asymptotic expansion in t, uniformly for z in the compact sets of C,

is X̂(t, z). The small divisors phenomenon owing to the Fuchsian singularity causes an increase

in the order of q-exponential growth and the appearance of a subexponential Gevrey growth in

the asymptotics.

1. Introduction. This work is a slightly modified, abridged version of our paper [15],
which has been published in J. Differential Equations. In particular, some basic hypothe-
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ses in that work have been simplified in our present arguments, so that results are now
easier to state but less general, and some technical proofs have been omitted. Moreover,
we include here some examples of the equations under consideration.

Partial differential equations of the form

t2r2∂r2t (z∂z)r1∂Sz u(t, z) = F (t, z, ∂t, ∂z)u(t, z), (1)

where S, r1, r2 ∈ N := {0, 1, . . . } and F is some differential operator with polynomial
coefficients, have been studied by the second author in [18, 17]. These equations belong
to a class of partial differential equations with both irregular singularity at t = 0 in the
sense of Mandai [21] (see also [6, 23]) and Fuchsian singularity at z = 0 (see, for example,
[1, 4, 9, 11, 22, 31]).

Departing from 1-Borel summable formal initial data in some direction d ∈ R

(∂jz û)(t, 0) = ûj(t) ∈ C[[t]], 0 ≤ j ≤ S − 1, (2)

one can construct the formal solution û(t, z) =
∑
m≥0 ûm(t)zm/m! ∈ (C[[t]])[[z]] of

(1), (2).
If r1 = 0, û(t, z) is 1-Borel summable with respect to t in the direction d, if this is well

chosen, as a series with coefficients in the Banach space of holomorphic functions near
the origin (in z) with the supremum norm, see [17]. Whereas if r1 6= 0, the Gevrey order
with respect to t suffers increasement, caused by the presence of small divisors introduced
by the Fuchsian operator (z∂z)r1 , see [18].

As a q-analog of the problem (1), (2) where ∂t is replaced by the operator
(f(qt) − f(t))/(qt − t) for q ∈ C (which formally tends to ∂t as |q| tends to 1), we
consider the q-difference-differential equation

(
(z∂z + 1)r1(tσq)r2 + 1

)
∂Sz X̂(t, z) =

S−1∑
k=0

bk(z)(tσq)m0,k(∂kz X̂)(t, zq−m1,k) (3)

with given initial conditions

(∂jzX̂)(t, 0) = X̂j(t) ∈ C[[t]], 0 ≤ j ≤ S − 1, (4)

where S,m0,k,m1,k are nonnegative integers for 0 ≤ k ≤ S − 1 and q ∈ C with |q| > 1.
σq stands for the dilation operator (σqX̂)(t, z) = X̂(qt, z), and bk(z) are polynomials in z.
As in previous works [19], [16], the map (t, z) 7→ (qm0,kt, zq−m1,k) is assumed to be volume
shrinking, meaning that the modulus of the Jacobian determinant |q|m0,k−m1,k < 1. We
will always assume that r1 ≥ 0, while r2 ≥ 1. The problem (3), (4) is studied under
Assumption (A) (see Section 3) on the parameters involved in the equation. The following
are some examples of equations solved in the present work:

Let S = 2, m00 = 1, m10 = 5, m01 = 0, m11 = 2 with I0 = {2, 3} and I1 = {1}. We
fix b02, b03, b11 ∈ C. If we take r1 = 0 and r2 = 1 the equation (3) turns into

t∂2
zX(qt, z) + ∂2

zX(t, z) = (b02 + b03z)z2tX(qt, zq−5) + b11z∂zX(t, zq−2),

whilst for r1 = 1 and r2 = 1, the problem considered is

tz∂3
zX(qt, z) + t∂2

zX(qt, z) + ∂2
zX(t, z) = (b02 + b03z)z2tX(qt, zq−5) + b11z∂zX(t, zq−2).
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Advanced/delayed partial differential equations have also been widely studied, see
for example [12, 13, 14, 24, 30, 33]. Some authors have considered the use of special
function transforms for the study of asymptotic properties of the solutions of q-difference-
differential equations [10, 25]. Our present work is a contribution to this area.

This Cauchy problem (3), (4) has a unique formal solution X̂(t, z) =
∑
h≥0 X̂h(t) z

h

h! ,
where X̂h(t) =

∑
m≥0 fm,ht

m ∈ C[[t]], h ≥ 0 (see Lemma 4.1). Our main result (The-
orem 7.2) states the construction of an actual solution X(t, z) which is asymptotically
represented by X̂(t, z) in some sense to be described precisely later. For this purpose, we
study the auxiliary Cauchy problem(

(z∂z + 1)r1τ r2 + 1
)
∂Sz Ŵ (τ, z) =

S−1∑
k=0

bk(z)τm0,k(∂kz Ŵ )(τ, zq−m1,k) (5)

with initial conditions

(∂jzŴ )(τ, 0) = Ŵj(τ) ∈ C[[τ ]], 0 ≤ j ≤ S − 1. (6)

The q-Laplace transform is the key when reducing the study of (3), (4) to this auxil-
iary problem (see Lemma 4.2). The q-Laplace transform we consider was introduced by
J.-P. Ramis and C. Zhang in [29], and in recent years it has been used with great success
in the study of the asymptotic properties of solutions of q-difference equations, see [8],
in much the same way as the classical Laplace–Borel transform has been applied to the
asymptotic study of formal solutions to differential equations and singular perturbation
problems in the complex domain (see the works of W. Balser [2, 3], B. Malgrange [20],
J.-P. Ramis [26] or O. Costin [7]).

This new Cauchy problem (5), (6) is studied in two respects.
Firstly, we study the behavior of the solution when departing from initial data Wj

being holomorphic functions defined in a q-spiral V qZ = {vqh : v ∈ V, h ∈ Z}, with
q-exponential growth (or order 2). Here, V ⊆ C \ {0} is a well chosen bounded open
set and q is also well chosen. In Theorem 4.3 we prove there exists a unique solution of
(5), (6),

W (τ, z) =
∑
h≥0

Wh(τ)
zh

h!
, (7)

holomorphic on V qZ×C and of q-exponential growth (of order 1) in τ , in the terminology
of [29], uniformly for z in any compact set of C. The increase in the order may be seen
as an effect of the small divisors appearing in the problem.

Secondly, if one departs from functions Wj , 0 ≤ j ≤ S − 1, which are holomorphic
near the origin, the coefficients in (7) turn out to be holomorphic functions in discs Dh

with radii tending to 0 as h tends to infinity (see Theorem 6.1). Indeed,

sup
τ∈Dh

|∂nWh(τ)| ≤ C1

( 1
T

)n( 1
X1

)h
n!h!(h+ 1)r1n/r2 |q|−h

2/2, n, h ≥ 0.

The constant T > 0 is common for every element of the set of initial conditions in the
auxiliary problem (14), (15) (see Theorem 3.7) and also for the ones in the auxiliary
problem (22), (23) (see Theorem 4.3). A more general result concerning a wider choice
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of these constants is supplied in [15]. However, the corresponding constants related to T
in [15] suffer an increasement while they keep preserved here.

Departing from initial conditions under both assumptions, one can apply the q-Laplace
transform on Wh (see Proposition 7.1), obtaining holomorphic functions which are defined
in a common domain Tλ,q,δ,r0 (see (9) for its definition) for all h ≥ 0.

The main result of this paper (Theorem 7.2) states that, if one departs from well
chosen formal initial conditions X̂j , 0 ≤ j ≤ S − 1, one can find a solution of (3), (4)

X(t, z) =
∑
h≥0

Lλq (Wh)(t)
zh

h!
,

which is holomorphic in Tλ,q,δ,r0 × C, and such that given R > 0, there exist constants
C̃ > 0, D̃ > 0 such that for every n ∈ N, n ≥ 1, one has∣∣∣X(t, z)−

∑
h≥0

n−1∑
m=0

fm,ht
m zh

h!

∣∣∣ ≤ C̃D̃nΓ
(r1

r2
(n+ 1)

)
|q|n(n−1)/2|t|n

for every t ∈ Tλ,q,δ,r0 , z ∈ D(0, R). Again one may note that the small divisors phe-
nomenon has caused the appearance of the term Γ( r1r2 (n+ 1)).

The paper is organized as follows. Section 2 provides the information concerning
the q-Laplace transform. Section 3 is devoted to the study of a first auxiliary Cauchy
problem in suitable weighted Banach spaces of formal Laurent series. This is needed
in the following section, more precisely, in the proof of Theorem 4.3. A second Cauchy
problem in weighted Banach spaces of formal Taylor series is stated in Section 5, leading
to Theorem 6.1. Finally, in Section 7, the solution of the main problem is constructed,
giving asymptotic properties (see Theorem 7.2). Some final remarks on the nature of the
solution in the special case that r1 = 0, in which no small divisors appear, are remarked.

We fix some conventions. C∗ stands for C\{0}, and N for the set {0, 1, 2, . . . }. D(0, r)
denotes the open disc with center 0 and radius r > 0. Given a set V ⊂ C and q ∈ C, we
define

V qZ = {vqh : v ∈ V, h ∈ Z}, V qN = {vqh : v ∈ V, h ∈ N}.

2. A q-analog of the Laplace transform and q-asymptotic expansion. In [29]
and [32], the authors introduce the concept of a q-analog of the Laplace transform. In
this section, we recall this concept and some of its main properties. The proof of the
next proposition is in the spirit of the one corresponding to Proposition 7.1, which can
be found in [15].

Proposition 2.1. Let q ∈ C such that |q| > 1. Let V be an open and bounded set in C∗
and D(0, ρ0) a disc such that V ∩D(0, ρ0) 6= ∅. Let (F, ‖ · ‖F) be a complex Banach space.
We also fix a holomorphic function φ : V qN ∪D(0, ρ0)→ F which satisfies the following
estimates: there exist C,M > 0 such that

‖φ(xqm)‖F ≤M |q|m
2/2Cm (8)

for all m ≥ 0, all x ∈ V . Let Θ be the Jacobi Theta function defined in C∗ by

Θ(x) =
∑
n∈Z

q−n(n−1)/2xn.
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Let δ > 0 and λ ∈ V ∩D(0, ρ0). We denote by

Rλ,q,δ =
{
t ∈ C∗ :

∣∣∣1 +
λ

tqk

∣∣∣ > δ ∀k ∈ Z
}
, Tλ,q,δ,r1 = Rλ,q,δ ∩D(0, r1). (9)

The q-Laplace transform of φ in the direction λqZ is defined by

Lλq (φ)(t) :=
∑
m∈Z

φ(qmλ)/Θ
(qmλ

t

)
for all t ∈ Tλ,q,δ,r1 , if r1 < |λq1/2|/C. Moreover, Lλq (φ)(t) defines a bounded holomorphic
function on Tλ,q,δ,r1 with values in F when r1 < |λq1/2|/C. Assume that the function φ

has the following Taylor expansion

φ(τ) =
∑
n≥0

fn
qn(n−1)/2

τn (10)

on D(0, ρ0), where fn ∈ F, n ≥ 0. Then there exist two constants D,B > 0 such that∥∥∥Lλq (φ)(t)−
n−1∑
m=0

fmt
m
∥∥∥

F
≤ DBn|q|n(n−1)/2|t|n (11)

for all n ≥ 1, for all t ∈ Tλ,q,δ,r1 .

Remark. In the situation described by (11) it is said that Lλq (φ) admits the series∑∞
m=0 fmt

m as q-Gevrey asymptotic expansion of order 1 (whenever the exponent of |q|
in the bounds is n(n − 1)/(2r) the order is said to be r). Analogously, a function that
satisfies estimates such as (8) is said to have q-exponential growth of order 1 in V qN.

If φ(z) =
∑
n≥0 anz

n is an entire function such that there exists C > 0 such that

|an| ≤ C exp(−(n− α)2/2)

for all n ≥ 0 and some α ≥ 0, then φ satisfies the estimates (8). For a reference, see [27].

Remark. It is worth noticing that Theta Jacobi function Θ(x) satisfies the q-difference
equation Θ(qx) = qxΘ(x) for all x ∈ C∗, so that it turns out to be a useful tool in the
framework of q-difference equations.

In general, one has Θ(qmλ/t) = qm(m+1)/2(λ/t)mΘ(λ/t) for all t ∈ C∗. Moreover,
from Lemma 4.6 of [28], there exists K1 > 0 such that

|Θ(qmλ/t)| ≥ K1δ
∑
n∈Z
|q|−n(n−1)/2

∣∣∣qmλ
t

∣∣∣n,
for all t ∈ Rλ,q,δ, all m ∈ Z. This growth property is implicitly exploited in the present
work.

It is straightforward to check the following

Proposition 2.2. Let V be an open and bounded set in C∗ and D(0, ρ0) be a disc such
that V ∩ D(0, ρ0) 6= ∅. Let φ be a holomorphic function on V qN ∪ D(0, ρ0) with values
in (F, ‖ · ‖F) which satisfies the estimates: There exist C,K > 0 such that ‖φ(xqm)‖F ≤
K|q|m2/2Cm for all m ≥ 0, all x ∈ V . Then the function Mφ(τ) = τφ(τ) is holomorphic
on V qN ∪D(0, ρ0) and satisfies estimates of the form (8). Let λ ∈ V ∩D(0, ρ0). We have
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the equality
Lλq (Mφ)(t) = tLλq (φ)(qt)

for all t ∈ Tλ,q,δ,r1 , if r1 < |λq1/2|/(C|q|).

For convenience, we recall the following concepts.

Definition 2.3. A series f̂(t) =
∑
n≥0 fnt

n ∈ C[[t]] is said to be q-Gevrey of order 1 if
its so-called formal q-Borel transform of order 1,

B̂q f̂(τ) =
∑
n≥0

fn
qn(n−1)/2

τn,

converges (i.e. it has positive radius of convergence).
The formal q-Laplace transform of order 1 of a series ĝ(τ) =

∑
n≥0 gnτ

n ∈ C[[τ ]] is
defined as

L̂q ĝ(t) =
∑
n≥0

qn(n−1)/2gnt
n,

so that these formal transforms are inverse of each other.

It is immediate to check that, in agreement with Proposition 2.2, for every ĝ ∈ C[[τ ]],

L̂q(τ ĝ)(t) = tL̂q ĝ(qt). (12)

3. A Cauchy problem in a weighted Banach space of formal Laurent series.
With the help of the q-Laplace transform we will change our initial problem (3), (4) into
an equivalent one (5), (6), whose study will require the consideration of two auxiliary
Cauchy problems. The first of them, which we are going to present in this section, will
be crucial in the study of the q-exponential growth of the coefficients of a solution of
(5), (6). Although our equation involves a complex number q with |q| > 1, in this section
and in Section 5 we will be only concerned with the value |q|, so we directly work with a
real value q > 1.

Definition 3.1. We consider the vector space Eq,(T,X) of formal Laurent power series

V (ξ, x) =
∑

l∈Z,h≥0

vl,hξ
l x

h

h!
∈ C[[ξ, ξ−1, x]] (13)

such that

‖V (ξ, x)‖(T,X) :=
∑

l∈Z,h≥0

|vl,h|
qP (l,h)

T l
Xh

h!
<∞,

where T,X > 0, q > 1 are positive real numbers and where

P (l, h) =

{
1
4 l

2 + 1
2 lh−

1
2 h

2 if l ≥ 0, h ≥ 0,

− 1
2h

2 if l ≤ 0, h ≥ 0.

The space (Eq,(T,X), ‖ · ‖(T,X)) is a Banach space.

Remark. Notice that (Eq,(T,X′), ‖ · ‖(T,X′)) ↪→ (Eq,(T,X), ‖ · ‖(T,X)) is a continuous inclu-
sion when 0 < X ≤ X ′.
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We consider the integration operator ∂−1
x defined on C[[ξ, ξ−1, x]] by

∂−1
x (V (ξ, x)) :=

∑
l∈Z,h≥1

vl,h−1ξ
l x

h

h!
∈ C[[ξ, ξ−1, x]].

The main result in this section, Theorem 3.7, rests on the following technical lemmas
whose proofs are omitted for simplicity.

Lemma 3.2. Let m1, s, h1, h2 ≥ 0 be nonnegative integers. Let T,X > 0. Assume that
s+h2 ≥ 2h1, m1 ≥ s+h2. Then there exist C > 0 (depending on q, s, h1, h2,m1) such that∥∥xs(∂−h2

x V )(qh1ξ, x/qm1)
∥∥

(T,X)
≤ CX(s+h2) ‖V (ξ, x)‖(T,X) for all V (ξ, x) ∈ Eq,(T,X).

Lemma 3.3. Let s, h1 ≥ 0 and T0, X0 > 0. Then there exists 0 < X1 ≤ X0q
−s and

for all T1 > 0 satisfying q−h1T0 ≤ T1 ≤ T0q
s/2−h1 , there exists a constant C1 > 0

(depending on q, s, h1, T0, X0) such that
∥∥xsV (qh1ξ, x)

∥∥
(T1,X1)

≤ C1‖V (ξ, x)‖(T0,X0) for
all V (ξ, x) ∈ Eq,(T0,X0).

Lemma 3.4. Let h2 ≥ 0 and T0, X0 > 0. Then there exists 0 < X1 < X0 and for all T1

satisfying T0 ≤ T1 ≤ T0q
h2/2, there exists a constant C2 > 0 (depending on q, h2, T0, X0)

such that
∥∥∂−h2

x V (ξ, x)‖(T1,X1) ≤ C2‖V (ξ, x)
∥∥

(T0,X0)
for all V (ξ, x) ∈ Eq,(T0,X0).

Let S,m0,k,m1,k, 0 ≤ k ≤ S − 1 be positive integers. Let D be the linear operator
from C[[ξ, ξ−1, x]] into C[[ξ, ξ−1, x]] defined by

D(V (ξ, x)) := ∂Sx V (ξ, x)−
S−1∑
k=0

ak(x)(∂kxV )(qm0,kξ, x/qm1,k),

for all V ∈ C[[ξ, ξ−1, x]], where ak(x) =
∑
s∈Ik aksx

s ∈ C[x], with Ik being a finite subset
of N, for 0 ≤ k ≤ S − 1.

We make the following hypothesis.

Assumption (A). For all 0 ≤ k ≤ S − 1, for all s ∈ Ik, we have

s− k ≥ 2m0,k, m1,k ≥ s+ S − k.

Remark. This assumption can be weakened to be

s+ S − k ≥ 2m0,k, m1,k ≥ s+ S − k,

for all 0 ≤ k ≤ S − 1, for all s ∈ Ik if one asks additional conditions on the growth
properties of the initial conditions in (4). These constraints would be related to the
constant T in Eq,(T,X). See [15] for details.

We consider the operator A from C[[ξ, ξ−1, x]] into C[[ξ, ξ−1, x]] defined by

A(V (ξ, x)) = V (ξ, x)−D(∂−Sx V (ξ, x)) =
S−1∑
k=0

ak(x)(∂k−Sx V )(qm0,kξ, x/qm1,k)

for all V ∈ C[[ξ, ξ−1, x]].
From Lemma 3.2, we deduce the following
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Lemma 3.5. Let T > 0. Then there exists X > 0 such that A is a linear bounded operator
from (Eq,(T,X), ‖ · ‖(T,X)) into itself. Moreover,

‖A(V (ξ, x))‖(T,X) ≤
1
2
‖V (ξ, x)‖(T,X),

for all V ∈ Eq,(T,X).

From Lemma 3.5, we deduce

Corollary 3.6. Let T > 0. Then there exists X > 0 such that D ◦ ∂−Sx is an invertible
linear operator from (Eq,(T,X), ‖ ·‖(T,X)) into itself. In particular, there exists C > 0 such
that

‖D(∂−Sx b(ξ, x))‖(T,X) ≤ C‖b(ξ, x)‖(T,X)

for all b(ξ, x) ∈ Eq,(T,X).

Theorem 3.7. Let S ≥ 1 be an integer. For all 0 ≤ k ≤ S − 1, let m0,k,m1,k be positive
integers and ak(x) =

∑
s∈Ik aksx

s ∈ C[x]. Let Assumption (A) be satisfied.
Consider the functional equation

∂Sx V (ξ, x) =
S−1∑
k=0

ak(x)(∂kxV )(qm0,kξ, x/qm1,k) (14)

with initial conditions

(∂jxV )(ξ, 0) = φj(ξ), 0 ≤ j ≤ S − 1. (15)

We assume that φj(ξ) ∈ Eq,(T,X0) for 0 ≤ j ≤ S−1, where X0 > 0 and T > 0. Then there
exists X > 0 such that the problem (14), (15) has a unique solution V (ξ, x) ∈ E(T,X).
Moreover, there exists C > 0 (depending on S, q, ak(x),m0,k,m1,k for 0 ≤ k ≤ S − 1 and
X0, T ) such that

‖V (ξ, x)‖(T,X) ≤ C
S−1∑
j=0

‖φj(ξ)‖(T,X0).

Proof. A formal series V (ξ, x) ∈ C[[ξ, ξ−1, x]] which satisfies (15) can be written in the
form V (ξ, x) = ∂−Sx U(ξ, x) + I(ξ, x) where

I(ξ, x) =
S−1∑
j=0

φj(ξ)
xj

j!

and U(ξ, x) ∈ C[[ξ, ξ−1, x]]. A formal series V (ξ, x) ∈ C[[ξ, ξ−1, x]] is a solution of the
problem (14), (15) if and only if U(ξ, x) satisfies the equation

D(∂−Sx U(ξ, x)) = −D(I(ξ, x)). (16)

By construction,

−D(I(ξ, x)) =
S−1∑
k=0

S−1∑
j=k

∑
s∈Ik

aks

qm1,k(j−k)(j − k)!
xs+j−kφj(qm0,kξ).

From Lemma 3.3 (taking T0 = T1 := T ) and Assumption (A), there exists X1 > 0 such
that xs+j−kφj(qm0,kξ) ∈ Eq,(T,X1) for all 0 ≤ k ≤ S − 1, all k ≤ j ≤ S − 1, all s ∈ Ik.
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Moreover, there exists C1 > 0 (depending on Ik, j,m0,k, X0, T ) such that

‖xs+j−kφj(qm0,kξ)‖(T,X1) ≤ C1‖φj(ξ)‖(T,X0). (17)

We deduce that D(I(ξ, x)) ∈ Eq,(T,X1) and from (17) there exists a constant C ′1 > 0
(depending on q, ak(x),m0,k,m1,k for 0 ≤ k ≤ S − 1 and X0, T ) such that

‖D(I(ξ, x))‖(T,X1) ≤ C ′1
S−1∑
j=0

‖φj(ξ)‖(T,X0). (18)

From Corollary 3.6, we deduce that equation (16) has a unique solution U(ξ, x) ∈
Eq,(T,X1). Moreover, there exists a constant C2 > 0 (depending on q, ak(x),m0,k,m1,k

for 0 ≤ k ≤ S − 1) such that

‖U(ξ, x)‖(T,X1) ≤ C2‖D(I(ξ, x))‖(T,X1). (19)

Take T1 = T0 := T in Lemma 3.4. We derive there exists X2 < X1 such that ∂−Sx U(ξ, x) ∈
Eq,(T,X2). Moreover, there exists a constant C3 > 0 (depending on q, S, T,X1) such that

‖∂−Sx U(ξ, x)‖(T,X2) ≤ C3‖U(ξ, x)‖(T,X1). (20)

From Lemma 3.3 (with T0 = T1 := T ), there exists X3 < X2 such that I(ξ, x) ∈ Eq,(T,X3).
Moreover, there exists a constant C4 > 0 (depending on S, q, T,X0) such that

‖I(ξ, x)‖(T,X3) ≤ C4

S−1∑
j=0

‖φj(ξ)‖(T,X0). (21)

Finally, the formal series V (ξ, x) = ∂−Sx U(ξ, x) + I(ξ, x), solution of problem (14), (15),
belongs to Eq,(T,X3). Moreover, from the inequalities (18), (19), (20) and (21), we get a
constant C5 (depending on S, q, ak(x),m0,k,m1,k for 0 ≤ k ≤ S− 1 and X0, T ) such that

‖V (ξ, x)‖(T,X3) ≤ C5

S−1∑
j=0

‖φj(ξ)‖(T,X0).

4. A Cauchy problem in analytic spaces of q-exponential growth. Let S ≥ 1,
r1, r2 ≥ 0 be integers. For all 0 ≤ k ≤ S − 1, let m0,k,m1,k be positive integers and
bk(z) =

∑
s∈Ik bksz

s be a polynomial in z, where Ik is a subset of N. The next lemma is
concerned with formal solution of the problem (3), (4).

Lemma 4.1. For every choice of formal series X̂j ∈ C[[t]], 0 ≤ j ≤ S − 1, the Cauchy
problem (3), (4) has a unique solution in the form of a formal power series X̂(t, z) =∑
h≥0 X̂h(t) z

h

h! , where X̂h ∈ C[[t]] for every h ≥ 0.

With the help of the q-Laplace transform, we reformulate our problem. Consider the
Cauchy problem(

(z∂z + 1)r1τ r2 + 1
)
∂Sz Ŵ (τ, z) =

S−1∑
k=0

bk(z)τm0,k(∂kz Ŵ )(τ, zq−m1,k) (22)

with initial conditions

(∂jzŴ )(τ, 0) = Ŵj(τ) ∈ C[[τ ]], 0 ≤ j ≤ S − 1. (23)
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Lemma 4.2. The formal series X̂(t, z) =
∑
h≥0 X̂h(t) z

h

h! , where X̂h ∈ C[[t]] for every
h ≥ 0, satisfies the Cauchy problem (3), (4) if and only if the formal series Ŵ (τ, z) =∑
h≥0 B̂qX̂h(τ) z

h

h! satisfies the Cauchy problem (22), (23) with Wj(τ) = B̂qX̂j, 0 ≤ j < S.

Conversely, Ŵ (τ, z) =
∑
h≥0 Ŵh(τ) z

h

h! , with Ŵh ∈ C[[τ ]] for every h ≥ 0, satisfies the

Cauchy problem (22), (23) if and only if the formal series X̂(t, z) =
∑
h≥0 L̂qŴh(t) z

h

h!

satisfies the Cauchy problem (3), (4) with X̂j(t) = L̂qŴj(t) for 0 ≤ j ≤ S − 1.

Proof. It suffices to insert each series in the corresponding Cauchy problem and apply
(12).

Let V be an open and bounded set in C∗, and q ∈ C with |q| > 1. In the following result
we study the q-exponential growth of the coefficients of a solution to the Cauchy problem
(22), (23). We will depart from initial conditions Wj , 0 ≤ j ≤ S−1, holomorphic in V qZ.
We make Assumption (A) in the previous section, so that we may apply Theorem 3.7,
and we also suitably choose q and V in order to deal with a small divisors problem.

Theorem 4.3. Let Assumption (A) (of Section 3) be fulfilled by the sets Ik and the
integers m0,k,m1,k, for 0 ≤ k ≤ S − 1.

1) We make the following assumptions on q and on the open set V : q is of the form
q = |q|eiθ, with θ = 2π/(br2) for some b ∈ N, b ≥ 1. If V r2 = {xr2 : x ∈ V }, we
assume that there exists ε ∈ (0,min{π/b, π/2}) such that

V r2 ∩
(b−1⋃
l=0

S
(
−π +

2πl
b
, 2ε
))

= ∅,

where S(d, ϕ) stands for the unbounded sector in C with vertex at 0, bisected by
direction d and with opening ϕ.

2) The following assumptions on the initial conditions hold : Let T > 0. There exists
a constant K0 > 0 such that

sup
x∈V
|Wj(xql)| ≤ K0|q|l

2/4
( 1
T

)l 1
1 + l2

, sup
x∈V
|Wj(xq−l)| ≤ K0T

l 1
1 + l2

(24)

for all 0 ≤ j ≤ S − 1, all l ≥ 0.

Then there exists a unique solution of (22), (23)

(τ, z) 7→W (τ, z) =
∑
h≥0

Wh(τ)
zh

h!

which is holomorphic on V qZ×C. Moreover, for all ρ > 0, there exists C > 0 (depending
on ρ, S, |q|, bk(z),m0,k,m1,k for 0 ≤ k ≤ S − 1 and T ) such that

sup
x∈V,z∈D(0,ρ)

|W (xql, z)| ≤ CK0|q|l
2/2
( 1
T

)l
, sup

x∈V,z∈D(0,ρ)

|W (xq−l, z)| ≤ CK0T
l (25)

for all l ≥ 0 (where K0 > 0 is defined in (24)).

Proof. From the hypothesis 1) in the statement, there exists δ > 0 such that∣∣(h+ 1)r1xr2qr2l + 1
∣∣ > δ (26)

for all l ∈ Z, all h ≥ 0, all x ∈ V .
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Remark. Condition 1) in the previous statement could be replaced by a more general
condition, namely: Let q and V be such that (26) is satisfied for some δ > 0 and for all
l ∈ Z, all h ≥ 0, all x ∈ V . However, we prefer to use 1) because of its easy geometrical
interpretation.

We consider the sequence of functions Wh(τ), h ≥ S, defined as follows

Wh+S(xql)
h!

=
S−1∑
k=0

∑
h1+h2=h,h1∈Ik

bkh1x
m0,kqm0,kl

((h+ 1)r1xr2qr2l + 1)
Wh2+k(xql)
h2!qm1,kh2

(27)

for all h ≥ 0, all l ∈ Z, all x ∈ V . One checks that the sequence Wh(τ), h ≥ 0, of
holomorphic functions on V qZ, satisfies the recursion (27) if and only if the formal series
W (τ, z) =

∑
h≥0Wh(τ) z

h

h! in the z variable, satisfies the problem (22), (23). From this
we deduce that the solution W , if exists, is unique.

According to (24) and (27), we can recursively prove that the sequence (wl,h)l∈Z,h≥0

defined by
wl,h = sup

x∈V
|Wh(xql)|, (28)

for all l ∈ Z, all h ≥ 0, consists of positive real numbers. Due to (26), the sequence
(wl,h)l∈Z,h≥0 satisfies the following inequalities: There exists r > 0 (depending onm0,k, V )
such that

wl,h+S

h!
≤
S−1∑
k=0

∑
h1+h2=h,h1∈Ik

|bkh1 | r |q|m0,kl

δ

wl,h2+k

h2!|q|m1,kh2

for all l ∈ Z, all h ≥ 0.
We consider the sequence of real numbers (vl,h)l∈Z,h≥0 defined by the recursion

vl,h+S

h!
=
S−1∑
k=0

∑
h1+h2=h,h1∈Ik

|bkh1 | r |q|m0,kl

δ

vl,h2+k

h2!|q|m1,kh2
(29)

with initial conditions vl,j = wl,j , for 0 ≤ j ≤ S−1, all l ∈ Z. By construction, we deduce
that

wl,h ≤ vl,h (30)

for all l ∈ Z, all h ≥ 0.

In the following, we put ak(x) =
∑
s∈Ik(|bks|r/δ)xs for 0 ≤ k ≤ S−1 and we consider

the formal Laurent series V (ξ, x) =
∑
l∈Z,h≥0 vl,hξ

l xh

h! . From the recursion (29), we get
that V (ξ, x) satisfies the following Cauchy problem

∂Sx V (ξ, x) =
S−1∑
k=0

ak(x)(∂kxV )(ξ|q|m0,k , x/|q|m1,k) (31)

with initial conditions

(∂jxV )(ξ, 0) = φj(ξ) :=
∑
l∈Z

wl,jξ
l, 0 ≤ j ≤ S − 1. (32)

From the hypothesis (24), we get that for any 0 ≤ j ≤ S− 1, φj(ξ) belongs to E|q|,(T,X0),
for all X0 > 0. By hypothesis, Assumption (A) holds for the sets Ik and the numbers
m0,k,m1,k. From Theorem 3.7, we deduce that the unique solution V (ξ, x) of the problem



84 A. LASTRA ET AL.

(31), (32) satisfies V (ξ, x) ∈ E|q|,(T,X) for a real number X > 0. Moreover, there exists a
constant C > 0 (depending on S, |q|, ak(x),m0,k,m1,k for 0 ≤ k ≤ S − 1 and X0, T ) such
that

‖V (ξ, x)‖(T,X) ≤ C
S−1∑
j=0

‖φj(ξ)‖(T,X0). (33)

From the inequality P (l, h) ≤ l2

2 −
h2

4 , for all l ∈ Z, h ≥ 0, and (33) we get that there
exists a constant C ′ > 0 (depending on S, |q|, ak(x),m0,k,m1,k for 0 ≤ k ≤ S−1 and X0,
T ) such that

|vl,h| ≤ K0C
′|q|l

2/2|q|−h
2/4h!

( 1
T

)l( 1
X

)h
, |v−l,h| ≤ K0C

′|q|−h
2/2T lh!

( 1
X

)h
(34)

for all l ≥ 0, all h ≥ 0, where K0 is the constant introduced in (24). From the inequalities
(30) and (34), we get that

sup
x∈V,z∈D(0,ρ)

|W (xql, z)| ≤ K0C
′|q|l

2/2
( 1
T

)l(∑
h≥0

|q|−h
2/4
( ρ
X

)h)
,

sup
x∈V,z∈D(0,ρ)

|W (xq−l, z)| ≤ K0C
′T l
(∑
h≥0

|q|−h
2/2
( ρ
X

)h)
for all l ≥ 0, all ρ > 0. So the estimates (25) hold.

5. Second auxiliary Cauchy problem. Our second approach to the auxiliary problem
is to assume the initial conditions Wh, 0 ≤ h ≤ S − 1, of (22), (23) are holomorphic
functions in suitably small neighborhoods of 0. Our purpose is to obtain information
on the rate of decreasing of the derivatives of the functions Wh, h ≥ 0, coefficients of
the solution constructed in Theorem 4.3, near the origin. This will be done in the next
section, where we will need the second auxiliary Cauchy problem we deal with in this
section.

Definition 5.1. Let q > 1 be given. Let us consider the space H(T,X) of formal power
series

V (ξ, x) =
∑

l≥0,h≥0

vl,hξ
l x

h

h!
∈ C[[ξ, x]]

such that

|V (ξ, x)|′(T,X) :=
∑

l≥0,h≥0

|vl,h|T lqh
2/2 X

h

h!
<∞,

where T,X are positive real numbers.

The space (H(T,X), | · |′(T,X)) is a Banach algebra.

Remark. We have a continuous inclusion (H(T,X′), | · |′(T,X′)) ↪→ (H(T,X), | · |′(T,X)) when-
ever 0 < X ≤ X ′.

The procedure followed in this section matches point by point with the one used in
Section 3 so details are omitted. In this section, only the second inequality of Assump-
tion (A) must hold. It is worthy to point out that the series R(ξ) :=

∑
`≥0 2`+ξξ`, involved

in the following result, belongs to H(T,X) if and only if T < 1/2.
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Theorem 5.2. Let us consider the Cauchy problem

∂Sx V (ξ, x) =
S−1∑
k=0

ck(x)R(ξ)(∂kxV )(ξ, x/|q|m1,k) (35)

with initial conditions

(∂jxV )(ξ, 0) = φj(ξ), 0 ≤ j ≤ S − 1, (36)

and assume that φj(ξ) ∈ H(T,X0), 0 ≤ j ≤ S − 1, where X0 > 0 and 0 < T < 1/2. Then
there exists X1 > 0 such that the problem (35), (36) has a unique solution V (ξ, x) ∈
H(T,X1). Moreover, there exists C > 0 (depending on S, q,X0, T , and ck(x),m1,k for
0 ≤ k ≤ S − 1) such that

|V (ξ, x)|′(T,X1) ≤ C
S−1∑
j=0

|φj(ξ)|′(T,X0).

6. Estimates for the derivatives of Wj near the origin. In the Cauchy problem
(22), (23) we consider initial conditions Wj which are holomorphic functions respectively
defined in open sets containing the closed disc

Dj = {τ : |τ | ≤ 1/(2(j + 1)r1/r2)}, 0 ≤ j ≤ S − 1,

(for the sake of brevity, we say that Wj is holomorphic in Dj). Then Cauchy’s integral
formula for the derivatives allows us to obtain constants Aj > 0 such that for every
natural number n ≥ 0 we have maxτ∈Dj |∂

nWj(τ)| ≤ Anj n!. So, the assumptions in the
following result are not restrictive. Its proof is not significantly simplified with respect to
the corresponding one in [15], Theorem 4, which provides a generalization, so we omit it
and refer to [15] for the details.

Theorem 6.1. Consider the Cauchy problem (22), (23). Suppose Wj(τ), 0 ≤ j ≤ S − 1,
are holomorphic functions in Dj such that there exist constants T,K > 0 such that

max
τ∈Dj

|∂nWj(τ)| ≤ K
( 1
T

)n n!
1 + n2

, n ≥ 0, j = 0, 1, . . . , S − 1.

Then there exists a formal solution of (22), (23), W (τ, z) =
∑
h≥0Wh(τ) z

h

h! , where Wh

is a holomorphic function in Dh = {τ : |τ | ≤ 1/(2(h+ 1)r1/r2)}, h ≥ S. Moreover, there
exists a constant X1 > 0 such that

sup
τ∈Dj

|∂nWj(τ)| ≤ C1

( 1
T

)n( 1
X1

)j
n!j!(j + 1)r1n/r2 |q|−j

2/2, (37)

for every n, j ≥ 0, where C1 is a positive constant (depending on S, q, T, bk(z) and m1,k

for 0 ≤ k ≤ S − 1).

7. Analytic solutions of the Cauchy problem with Fuchsian and irregular sin-
gularities. Let Wh be the initial data in the Cauchy problem (22), (23), and suppose
they are subject to the hypotheses of Theorem 4.3 and to the hypotheses in Theorem 6.1.
Those results give us a sequence of functions {Wh}h≥0, holomorphic in V qZ∪Dh for each
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h ≥ 0, and such that the series

W (τ, z) =
∑
h≥0

Wh(τ)
zh

h!

defines a holomorphic function on V qZ × C which solves the Cauchy problem.
Moreover, from (28), (30) and (34) in the proof of Theorem 4.3 we know that

sup
x∈V
|Wh(xql)| ≤ K0C

′|q|l
2/2|q|−h

2/4h!
( 1
T

)l( 1
X

)h
(38)

for all l, h ≥ 0.
Let us choose λ ∈ V and δ > 0. By (38) we see that every Wh satisfies estimates as

those in (8). If we choose an integer n(h) in such a way that λqn(h) ∈ Dh, then, according
to Proposition 2.1, the q-Laplace transform of Wh in the direction λqn(h)qZ, which clearly
equals λqZ, is given by

Lλq
n(h)

q (Wh)(t) =
∑
m∈Z

Wh(qmλqn(h))
Θ
(
qmλqn(h)/t

) =
∑
m∈Z

Wh(qmλ)
Θ(qmλ/t)

,

so that it deserves to be denoted by Lλq (Wh)(t). This function is well defined and holomor-
phic in the set Tλqn(h),q,δ,r(h), which is equal to Tλ,q,δ,r(h), whenever r(h) < |λqn(h)q1/2|T .
We will show that these radii r(h) can be taken independent of h, equal to r0 =
|λq1/2|T/|q| = |λq−1/2|T for every h ≥ 0, and we will obtain precise estimates for the
corresponding q-asymptotic expansions.

Let us assume that the function Wh has the following Taylor expansion at 0,

Wh(τ) =
∑
n≥0

fn,h
qn(n−1)/2

τn, (39)

where fn,h ∈ C, n, h ≥ 0, and τ ∈ Dh.
The proof for the next result can entirely be reproduced regarding Proposition 3

in [15], so its demonstration is omitted. We only point out that the estimates (37) in
Theorem 6.1, the properties of Theta Jacobi function (see the second remark after Propo-
sition 2.1) and the estimates in (38) are taken into account in its proof which also rests
on an appropriate modification of the corresponding one in Proposition 2.1, providing
the estimates in (11).

Proposition 7.1. In the situation assumed in this section, there exist B(h), D(h) > 0
with

B(h) = A1(h+ 1)r1/r2 , D(h) = A2(h+ 1)r1/r2h!Ah3 |q|−h
2/4, (40)

where A1, A2 and A3 are positive constants that do not depend on h, such that∣∣∣Lλq (Wh)(t)−
n−1∑
m=0

fm,ht
m
∣∣∣ ≤ D(h)B(h)n|q|n(n−1)/2|t|n (41)

for all n ≥ 1, for all t ∈ Tλ,q,δ,r0 .

We are ready to obtain our main result.
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Theorem 7.2. Suppose X̂j(t) =
∑
m≥0 fm,jt

m ∈ C[[t]], 0 ≤ j ≤ S − 1, are given initial
conditions for the Cauchy problem (3), (4), and let

X̂(t, z) =
∑
h≥0

X̂h(t)
zh

h!
=
∑
h≥0

∑
m≥0

fm,ht
m zh

h!

be the only formal series solution of the problem (see Lemma 4.1). We suppose that the
series X̂j(t), 0 ≤ j ≤ S− 1, are q-Gevrey of order 1, and that their formal q-Borel trans-
forms of order 1, Wj(τ) = B̂qX̂j(τ), which are holomorphic functions around 0, indeed
satisfy the assumptions of Theorems 4.3 and 6.1. We also assume that the remaining
hypotheses of Theorem 4.3 are satisfied. Let W (τ, z) =

∑
h≥0Wh(τ) z

h

h! be the solution of
the Cauchy problem (22), (23), corresponding to the initial conditions Wj, 0 ≤ j ≤ S−1.
Then

1) The function X(t, z) =
∑
h≥0 Lλq (Wh)(t) z

h

h! is holomorphic in Tλ,q,δ,r0 × C.
2) The function X(t, z) solves the Cauchy problem (3), (4).
3) If r1 ≥ 1, given R > 0 there exist constants C̃, D̃ > 0 such that for every n ∈ N \ 0,

∣∣∣X(t, z)−
∑
h≥0

n−1∑
m=0

fm,ht
m zh

h!

∣∣∣ ≤ C̃D̃nΓ
(r1

r2
(n+ 1)

)
|q|n(n−1)/2|t|n (42)

for every t ∈ Tλ,q,δ,r0 , z ∈ D(0, R).

If r1 = 0, given R > 0 there exist constants C̃, D̃ > 0 such that for every n ∈ N, n ≥ 1,∣∣∣X(t, z)−
∑
h≥0

n−1∑
m=0

fm,ht
m zh

h!

∣∣∣ ≤ C̃D̃n|q|n(n−1)/2|t|n (43)

for every t ∈ Tλ,q,δ,r0 , z ∈ D(0, R).

Remark. Due to the estimates (42) and (43), we may say that the function X(t, z)
admits the series

∑
h≥0

∑
m≥0 fm,ht

m zh

h! as q-asymptotic expansion of order 1 in t, uni-
formly for z in the compact subsets of C. It may be noted that, because of the small
divisors problem we have dealt with, a new factor appears in the estimates, in terms of
the Eulerian Gamma function. The value r1/r2 may be thought of as a sub-order, or a
second-level order, in the asymptotic expansion.

Proof. 1) In view of (41), for n = 1, and (40) we have that

|Lλq (Wh)(t)− f0,h| ≤ D(h)B(h)|t| ≤ A1(h+ 1)2r1/r2A2h!Ah3 |q|−h
2/4r0

for every h ≥ 0, every t ∈ Tλ,q,δ,r0 . According to the estimates (37) we have

|f0,h| ≤ C1

( 1
X1

)h
h!|q|−h

2/2

for every h ≥ 0. So, we conclude that there exist A4, A5 > 0 such that

|Lλq (Wh)(t)| ≤ A4A
h
5h!|q|−h

2/4

for every h ≥ 0, every t ∈ Tλ,q,δ,r0 . Then for z ∈ D(0, R)∣∣∣∑
h≥0

Lλq (Wh)(t)
zh

h!

∣∣∣ ≤∑
h≥0

A4(A5R)h|q|−h
2/4 <∞,

so that the series converges and the function it defines is holomorphic in Tλ,q,δ,r0 × C.
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2) Since the series
∑
h≥0Wh(τ) z

h

h! is a solution of (22), (23), one can guarantee that
X(t, z) is a solution of the Cauchy problem (3), (4) by Proposition 2.2.

3) For every n ≥ 1, every (t, z) ∈ Tλ,q,δ,r0 ×D(0, R), the sum∑
h≥0

n−1∑
m=0

fm,ht
m zh

h!

is convergent, as we see from the estimates in (37). One may take into account (41)
and (40) and write∣∣∣X(t, z)−

∑
h≥0

n−1∑
m=0

fm,ht
m zh

h!

∣∣∣ ≤∑
h≥0

∣∣∣Lλq (Wh)(t)−
n−1∑
m=0

fm,ht
m
∣∣∣ Rh
h!

≤ A2A
n
1 |q|n(n−1)/2|t|n

∑
h≥0

(h+ 1)r1(n+1)/r2(A3R)h|q|−h
2/4

=
A2

A3R
An1 |q|n(n−1)/2|t|n

∑
h≥1

hr1(n+1)/r2(A3R)h|q|−(h−1)2/4. (44)

In case r1 = 0, the conclusion easily follows, since the last sum is convergent and inde-
pendent of n. In case r1 ≥ 1, we follow an idea of B. Braaksma and L. Stolovitch [5]. Let
ε > 0, and let γ be a contour that goes from ∞e−iπ to −ε along the negative real axis,
then it turns once around 0 in the positive sense, and it goes from −ε to ∞eiπ again
along the negative real axis. For µ := r1(n+1)

r2
> 0, Hankel’s formula allows us to write

hµ

Γ(µ+1) = 1
2πi

∫
γ
ehss−µ−1 ds, so that the sum in (44) may be written as

Γ(µ+ 1)
2πi

∑
h≥1

(A3R)h|q|−(h−1)2/4

∫
γ

ehss−µ−1 ds

=
Γ(µ+ 1)

2πi

∑
h≥1

∫
γ

s−µ−1|q|−(h−1)2/4(A3Re
s)h ds. (45)

We consider now the entire function F (z) =
∑
h≥1 |q|−(h−1)2/4zh, z ∈ C. The series

converges uniformly in every closed disc. Observe that as s runs over γ, its real part
remains bounded above, and the same is valid for the modulus of A3Re

s. So, we may write
F (A3Re

s) =
∑
h≥1 |q|−(h−1)2/4(A3Re

s)h uniformly in γ, and the dominated convergence
theorem ensures that∑

h≥1

∫
γ

s−µ−1|q|−(h−1)2/4(A3Re
s)h ds =

∫
γ

s−µ−1
∑
h≥1

|q|−(h−1)2/4(A3Re
s)h ds

=
∫
γ

s−µ−1F (A3Re
s) ds. (46)

Moreover, F (A3Re
s) remains bounded as s runs over γ, say by M > 0, and it is easy to

obtain, estimating on each of the three parts of γ, that∣∣∣∫
γ

s−µ−1F (A3Re
s) ds

∣∣∣ ≤ 2
M

µεµ
+

2πM
εµ
≤ M̃µ

µεµ
, (47)

where M̃ > 0 is some suitable constant independent of h. Gathering (44), (45), (46) and
(47) and from the definition of µ one can conclude.
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Remark. The case r1 = 0, as it may be seen in the last theorem, deserves some attention,
since the Fuchsian singularity at z = 0 does not appear any more. The most important
consequence of this fact is the disappearance of the small divisors phenomenon we had
in general.

Moreover, the condition 1) in Theorem 4.3, concerning the argument of q and the
set V , can be relaxed. Indeed, the estimates (26) hold if one assumes that there exists
δ > 0 such that dist(V r2qr2Z, {−1}) > δ, where dist is the Euclidean distance between two
sets in C. For example, suppose V is such that there existR1, R2 with 0 < R1 ≤ |xr2 | ≤ R2

for all x ∈ V , and suppose that R2 < |q|R1 and |q|r2jR2 < 1 < |q|r2(j+1)R1 for some
j ∈ Z. In Theorem 6.1 all the functions Wh are holomorphic in a common disc, say D,
and there exists a constant X1 > 0 such that

sup
τ∈D
|∂nWj(τ)| ≤ C1

( 1
T

)n( 1
X1

)j
n!j!|q|−j

2/2

for every n, j ≥ 0. The proof of Proposition 7.1 admits some simplification, and one
obtains that ∣∣∣Lλq (Wh)(t)−

n−1∑
m=0

fm,ht
m
∣∣∣ ≤ A2h!Ah3 |q|−h

2/4An1 |q|n(n−1)/2|t|n,

for every h ≥ 0, n ≥ 1. Finally, no sub-order appears in the q-asymptotic expansion of
the solution X(t, z).
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